

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

Acceleration Effect of Allylic Hydroxy Group on Ring-Closing Enyne Metathesis of Terminal Alkynes: Scope, Application and Mechanistic Insights

Tatsushi Imahori,* Hidetomo Ojima, Yuichi Yoshimura, and Hiroki Takahata*

Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan **General Comments:** NMR spectra were recorded on JNM-EX270 (20 MHz) spectrometer, JEOL JNM-AL400 (400 MHz) spectrometer, JNM-EX400 (400 MHz) spectrometer and JNM-EX600 (600 MHz) pectrometer in CDCl₃, C₆D₆, D₂O and CD₂Cl₂. ¹³C-NMR spectra were recorded using broad band proton decoupling. Residual CHCl₃ signal or tetramethylsilane was used as an internal standard for ¹H- and ¹³C-NMR in CDCl₃. The C₆D₆ itself was used as an internal standard for ¹³C-NMR in C₆D₆. The residual non-deuterated H₂O signal was used as internal standard for ¹H-NMR and acetonitrile was used as an internal standard in ¹³C-NMR in D₂O. CD₂Cl₂ was used in NMR studies and kinetic studies with ¹H-NMR spectrum. In NMR studies, the residual non-deuterated CH₂Cl₂ was used as an internal standard in chemical shift. In kinetic studies, CH₂ClCH₂Cl was used as internal standard in chemical shifts are expressed in δ (ppm) values, and coupling constants are expressed in hertz (Hz). The following abbreviations are used: s = singlet, d = doublet, m = multiplet, br s = broad singlet, br d = broad doublet, dd = double-doublet and ddd = double-double-doublet. Mass spectra were recorded on JEOL JMN-DX303 or JEOL JMA-DA5000 spectrometer. IR spectra were measured with Perkin-Elmer 1725 X series FT-IR spectrometer. CH₂Cl₂ was bubbled with Ar well before use in ring-closing enyne metathesis. LDA = lithium diisopropylamide, LAH = lithium alminum hydride, PCC = pyridiniume chlorochromate, DIBAH = diisobutylalminum hydride

Synthesis of enyne substrates with an allylic or other hydroxy group

tert-Butyl but-3-enylprop-2-ynylcarbamate (1a): To a solution of propargylamine (3.0 mmol) in CH₃CN (12 mL) was added K₂CO₃ (3.0 mmol) at rt and the mixture was stirred for 1 hour. Then 4-bromo-1-butene (3.0 mmol) was added to the mixture and the mixture was warmed to 90 °C. After stirring for 11 hours at 90 °C, the mixture was concentrated in vacuo and the residue was diluted with CH₂Cl₂. The mixture was washed with saturated aqueous solution of NaHCO₃ and the organic layer was dried over K₂CO₃. The solvent was evaporated in vacuo and the residue was stirred overnight. The solvent of the reaction mixture was evaporated in vacuo and the residue was diluted with Et₂O. The mixture was washed with 1N HCl and the organic layer was dried over Na₂SO₄. The solvent was evaporated in vacuo and the residue was diluted with Et₂O. The mixture was washed with 1N HCl and the organic layer was dried over Na₂SO₄. The solvent was evaporated in vacuo and the residue was evaporated in vacuo and the residue was purified by silica gel column chlomatography to obtain 313 mg of **1a** (50% yield for 2 steps).

1a: ¹H-NMR (400 MHz, CDCl₃): d = 1.47 (s, 9H), 2.21 (t, J = 2.4 Hz, 1H), 2.30-2.35 (m, 2H), 3.38 (t, J = 7.2, 2H), 4.07 (br s, 2H), 5.01-5.11 (m, 2H), 5.72-5.83 ppm (m, 1H); ¹³C-NMR (100 MHz, CDCl₃): $d = 28.3, 32.6, 36.0, 45.9, 71.4, 80.1, 85.1, 116.6, 135.3, 146.7 ppm; IR (neat): <math>\mathbf{n}^{\sim} = 1697$ cm⁻¹; EI-Ms: m/z: 209 (M^{+}); HRMS: m/z: Calcd for C₁₂H₁₉NO₂: 209.1416, Found: 209.1410.

tert-Butyl 2-(benzyloxy)but-3-enylprop-2-ynylcarbamate (1c): To a solution of 1b (1.2 mmol) in THF (3.0 mL) was added NaH (2.3 mmol) at 0 °C and the mixture was stirred for 1 hour. Then benzyl bromide (3.5 mmol) and *n*-Bu₃NI (20 mg) was added to the mixture at 0 °C. After stirring for 2 hours at 0 °C, the mixture was diluted with Et₂O and washed with saturated aqueous solution of NH₄Cl, H₂O and brine. The organic layer was dried over Na₂SO₄. The solvent was evaporated in vacuo and the residue was purified by silica gel column chlomatography to obtain 280 mg of 1c (76% yield).

1c: ¹H-NMR (400 MHz, CDCl₃): d = 1.43 (d, J = 24.6 Hz, 9H), 2.17 (s, 1H), 3.30-3.55 (m, 1H), 4.02-4.26 (m, 3H), 4.35 (d, J = 11.6 Hz, 1H), 4.60 (d, J = 12.1 Hz, 2H), 5.27-5.35 (m, 2H), 5.69-5.78 (m, 1H), 7.23-7.34 ppm (m, 5H); ¹³C-NMR (100 MHz, CDCl₃): d = 28.3, 30.9, 37.2, 38.2, 50.4, 70.4, 70.9, 71. 4, 79.5, 80.2, 118.4, 118.7, 127.5, 128.3, 136.1, 136.3, 154.9 ppm; IR (neat): $\mathbf{n}^{\sim} = 1698$ cm⁻¹; EI-Ms: m/z: 315 (M^{+}); HRMS: m/z: Calcd for C₁₂H₂₅NO₃: 315.1834, Found: 315.1823.

tert-Butyl 2-(*tert*-butyldiphenylsilyloxy)but-3-enylprop-2-ynylcarbamate (1d): To a solution of 1b (0.43 mmol) in CH_2Cl_2 (2.0 mL) was added imidazole (0.65 mmol), DMAP (0.0086 mmol) and TBDPSCl (0.47 mmol) at rt and the mixture was stirred for 4 hours. Then the reaction mixture was filtered with a pad of celite. The filtrate was washed with brine and dried over Na₂SO₄. The solvent was evaporated in vacuo and the residue was purified by silica gel column chlomatography to obtain 280 mg of 1d (86% yield).

1d: ¹H-NMR (400 MHz, CDCl₃): d = 1.09 (s, 9H), 1.40 (d, J = 29.5 Hz, 9H), 2.10 (s, 1H), 3.33-3.38 (m, 2H), 3.78-4.03 (m, 2H), 4.34-4.40 (m, 1H), 4.92-5.01 (m, 2H), 5.71-5.80 (m, 1H), 7.25-7.44 (m, 6H), 7.62-7.70 ppm (m, 4H); ¹³C-NMR (100 MHz, CDCl₃): d = 19.2, 27.0, 28.3, 37.0, 37.7, 52.0, 70.9, 71.4, 73.6, 79.7, 80.2, 116.0, 116.2, 127.4, 127.6, 129.6, 129.7, 133.7, 133.8, 135.9, 136.0, 138.2, 138.4, 154.9 ppm; IR (neat): $\mathbf{n}^{\sim} = 1700$ cm⁻¹; EI-Ms: m/z: 463(M^+), 464 (M^+ +H); HRMS: m/z: Calcd for C₂₈H₃₇NO₃Si: 463.2543, Found: 463.2532.

1-(Prop-2-ynyloxy)but-3-en-2-ol (1e): To a solution of n-Bu₂SnO (10 mmol) in MeOH (50 mL) was added 3,4dihydroxy-1-butene (10 mmol) at rt and the mixture was warmed to 60 °C. After stirring overnight, the mixture was heated under reflux for 2 hours. The mixture was concentrated in vacuo and the residue was dissolved in CH₂Cl₂ (25 mL). Propargyl bromide (10 mmol) was added to the solution at rt and the mixture was heated under reflux for 28 hours. The reaction mixture was diluted with CH₂Cl₂ and washed with water. The organic layer was

dried over Na₂SO₄. The solvent was evaporated in vacuo and the residue was purified by silica gel column chlomatography to obtain a mixture of **1e** and regio-isomer (>27% yield, **1e** : regio-isomer = ca. 1:0.2-0.3 from ¹H-NMR). The mixture of regio-isomers was dissolved in CH₂Cl₂ (8 mL) and pyridine (2 mL). Then pivaloyl chloride (1.4 mmol) was added to the solution at 0°C. After stirring overnight, the reaction mixture was diluted with CH₂Cl₂ and washed with saturated aqueous solution of NaHCO₃ and saturated aqueous solution of NH₄Cl. The organic layer was dried over Na₂SO₄. Then the solvent was evaporated in vacuo and the residue was purified by silica gel column chlomatography to obtain **1e** (53% yield).

1e: ¹H-NMR (400 MHz, CDCl₃): d = 2.30 (d, J = 3.4 Hz, 1H), 2.46 (t, J = 2.4 Hz, 1H), 3.43 (dd, J = 9.7 Hz, 8.2 Hz, 1H), 3.64 (dd, J = 9.7, 3.4 Hz, 1H), 4.22 (dd, J = 3.4, 2.4 Hz, 2H), 4.36 (m, 1H), 5.23 (dt, J = 9.2 Hz, 1.5 Hz, 1H), 5.39 (dt, J = 15.9 Hz, 1.5 Hz, 1H), 5.81-5.90 ppm (m, 1H); ¹³C-NMR (100 MHz, CDCl₃): d = 58.5, 71.3, 73.7, 74.9, 79.3, 116.6, 136.3 ppm; IR (neat): $\mathbf{n}^{\sim} = 3424$, 2116, 1647 cm⁻¹; EI-Ms: m/z: 125 (M^{+} -H); HRMS: m/z: Calcd for C₇H₁₀O₂: 125.0603, Found: 125.0592.

Oct-1-en-7-yn-3-ol (1f): To a solution of PCC (26.7 mmol) and NaOAc (2.7 mmol) in CH_2Cl_2 (25 mL) was added 5-hexyn-1-ol (17.7 mmol) at 0 °C and the mixture was stirred at the temperature. After stirring for 2 hours, the reaction mixture was filtered with a pad of silica gel. The filtrate was concentrated in vacuo. Then the residue was dissolved in THF (60 mL) under Ar atmosphere. Vinylmagnesium chloride (1.44 M THF solution, 17.7 mmol) was added to the solution at -78 °C and the mixture was stirred at the temperature. After stirring for 2 hours, further 0.5 equivalent of vinylmagnesium chloride was added to the mixture to complete reaction. Then the reaction was quenched with aqueous solution of NH_4Cl and the reaction mixture was diluted with CH_2Cl_2 . The mixture was washed with water and the organic layer was dried over Na_2SO_4 . The solvent was evaporated in vacuo and the residue was purified by silica gel column chlomatography to obtain **1f** (>16% yield for 2 steps).

1f: ¹H-NMR (400 MHz, CDCl₃): d = 1.47-1.70 (m, 4H), 1.96 (t, J = 2.4 Hz, 1H), 2.24 (m, 2H), 4.14 (m, 1H), 5.13 (d, J = 10.2 Hz, 1H), 5.24 (d, J = 17.1 Hz, 1H), 5.84-5.92 ppm (m, 1H); ¹³C-NMR (100 MHz, CDCl₃): d = 18.3, 24.3, 35.8, 68.5, 72.7, 84.2, 114.9, 140.9 ppm; IR (neat): n = 3302, 2116, 1645, 1431 cm⁻¹; EI-Ms: m/z: 123 (M^+ -H); HRMS: m/z: Calcd for C₈H₁₂O: 123.0810, Found: 123.0798.

4,4-Dimethyloct-1-en-7-yn-3-ol (1g): To a solution of LDA (5.2 mmol) in THF (7 mL) was added ethyl isobutylate (5.0 mmol) at -78 °C and the mixture was stirred at 0 °C. After stirring for 10 minutes, 4-bromo butyne was added to the solution at -78 °C. The mixture was allowed to warm to ambient temperature and stirred for 3 hours. Then the reaction was quenched with aqueous solution of NH₄Cl and the reaction mixture was diluted with CH₂Cl₂. The mixture was washed with water and the organic layer was dried over Na₂SO₄. The solvent was

evaporated in vacuo and the residue was purified by silica gel column chlomatography to obtain ethyl 2,2dimethylhex-5-ynoate (31% yield). To a solution of LAH (1.0 M Et₂O solution, 1.53 mmol) in Et₂O (5 mL) under Ar atmosphere was added a solution of ethyl 2,2-dimethylhex-5-ynoate (1.53 mmol) in Et₂O (2 mL) at 0 °C and the mixture was stirred for 20 minutes at the temperature. Then 10% aqueous solution of KOH was added dropwise to the mixture at 0 °C. The mixture was allowed to warm to rt and stirred. After stirring for 1 hour, the reaction mixture was filtered with a pad of celite and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chlomatography to obtain 2,2-dimethylhex-5-yn-1-ol (71% yield). To a solution of 2,2dimethylhex-5-yn-1-ol (0.94 mmol) and celite (900 mg) in CH₂Cl₂(5.5 mL) was added PCC (2.8 mmol) at rt and the mixture was stirred for 6.5 hours. Then the reaction mixture was filtered with a pad of silica gel and the filtrate was concentrated in vacuo. The residue was dissolved in THF (3.3 mL) under Ar atmosphere. Vinylmagnesium chloride (1.44 M THF solution, 0.95 mmol) was added to the solution at -78 °C and the mixture was stirred at the temperature. After stirring for 1 hour, the reaction was quenched with aqueous solution of NH₄Cl and the reaction mixture was diluted with CH₂Cl₂. The mixture was washed with water and the organic layer was dried over Na₂SO₄. The solvent was evaporated in vacuo and the residue was purified by silica gel column chlomatography to obtain **1g** (40% yield for 2 steps).

1g: ¹H-NMR (400 MHz, CDCl₃): d = 0.88 (s, 3H), 0.89 (s, 3H), 1.46-1.58 (m, 2H), 1.65-1.73 (m, 1H), 1.94 (t, J = 2.4 Hz, 1H), 2.18-2.24 (m, 2H), 3.83 (t, J = 5.4 Hz, 1H), 5.20 (d, J = 10.2 Hz, 1H), 5.25 (d, J = 17.1 Hz, 1H), 5.93 ppm (ddd, J = 17.1, 10.2, 6.8 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): d = 13.4, 22.5, 22.7, 37.2, 37.6, 67.9, 79.6, 85.4, 116.8, 137.6 ppm; IR (neat): $\mathbf{n}^{\sim} = 3445$, 2117, 1642 cm⁻¹; EI-Ms: m/z: 152 (M^+); HRMS: m/z: Calcd for C₁₀H₁₆O: 152.1201, Found: 152.1177.

Di-tert-butyl 2-(2-hydroxybut-3-enyl)-2-(prop-2-ynyl)malonate (1h): To a solution of NaH (41.3 mmol) in THF (50 mL) was added di-tert-butyl malonate (20.2 mmol) at 0 °C and the mixture was stirred at rt. After stirring for 1 hour, 2-bromo-1,1-dimethoxyethane (19.7 mmol) was added to the mixture at rt. Then the mixture was allowed to warm to ambient temperature and stirred for 3 hours. The reaction was quenched with aqueous solution of NH₄Cl and the reaction mixture was diluted with CH₂Cl₂. The mixture was washed with water and the organic layer was dried over Na₂SO₄. The solvent was evaporated in vacuo and the residue was purified by silica gel column chlomatography to obtain di-tert-butyl 2-(2,2-dimethoxyethyl)malonate (12.3% yield). To a solution of NaH (6.1 mmol) in THF (10 mL) was added di-tert-butyl 2-(2,2-dimethoxyethyl)malonate (5.1 mmol) in THF (2.5 mL) at 0 °C and the mixture was stirred at rt. After stirring for 30 min, propargyl bromide (7.6 mmol) was added to the mixture at 0 °C. Then the mixture was allowed to warm to ambient temperature and stirred for 3 hours. The reaction was quenched with aqueous solution of NH₄Cl and the reaction mixture was diluted with CH₂Cl₂. The mixture was washed with water and the organic layer was dried over Na₂SO₄. The solvent was evaporated in vacuo and the residue was dissolved in acetone (20 mL) and H₂O (0.25 mL). p-Toluene sulfonic acid monohydrate (0.25 mmol) was added to the solution at rt and the mixture was stirred overnight. The reaction mixture was evaporated in vacuo and the residue was purified by silica gel column chlomatography to obtain di-tert-butyl 2-(formylmethyl)-2-(prop-2-ynyl)malonate (>40% yield for 2 steps). To a solution of di-tert-butyl 2-(formylmethyl)-2-(prop-2-ynyl)malonate (2.0 mmol) in THF (6 mL) was added vinylmagnesium chloride (1.48 M THF solution, 2.0 mmol) at -78 °C and the mixture was stirred at the temperature. After stirring for 1 hour, the reaction was quenched with aqueous solution of NH₄Cl and the reaction mixture was diluted with CH₂Cl₂. The mixture was

washed with water and the organic layer was dried over Na_2SO_4 . The solvent was evaporated in vacuo and the residue was purified by silica gel column chlomatography to obtain **1h** (>15% yield).

1h: ¹H-NMR (400 MHz, CDCl₃): d = 1.44 (d, J = 1.5 Hz, 18H), 2.00 (t, J = 2.4 Hz, 1H), 2.18-2.20 (m, 3H), 2.78 (dd, J = 14.5, 2.4 Hz, 1H), 2.58 (dd, J = 14.5, 2.4 Hz, 1H), 4.24 (m, 1H), 5.08 (d, J = 10.1 Hz, 1H), 5.24 (d, J = 17.4 Hz, 1H), 5.88 (ddd, J = 17.4, 10.1, 5.3 Hz, 1H), 5.93 ppm (ddd, J = 17.1, 10.2, 6.8 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): d = 23.4, 27.7, 39.0, 56.6, 69.4, 71.3, 79.5, 82.0, 114.3, 141.1, 169.5, 160.7 ppm; IR (neat): $n^{\sim} = 3543$, 2122, 1732, 1715, 1645 cm⁻¹; EI-Ms: m/z: 325 (M^{+} +H); HRMS: m/z: Calcd for C₁₈H₂₉O₅: 325.2015, Found: 325.2018.

Hept-1-en-6-yn-3-ol (1i): To a solution of 4-pentyn-1-ol (36.3 mmol) in CH_2Cl_2 (220 mL) was added celite (36g) and PCC (109.1 mmol) at rt and the mixture was stirred at the temperature. After stirring for 3 hours, the reaction mixture was filtered with a pad of silica gel. The filtrate was concentrated in vacuo. Then the residue was dissolved in THF (130 mL) under Ar atmosphere. Vinylmagnesium chloride (1.48 M THF solution, 37.0 mmol) was added to the solution at -78 °C and the mixture was stirred at the temperature. After stirring for 10 minutes, the reaction was quenched with aqueous solution of NH_4Cl and the reaction mixture was diluted with CH_2Cl_2 . The mixture was washed with water and the organic layer was dried over Na_2SO_4 . The solvent was evaporated in vacuo and the residue was purified by silica gel column chlomatography to obtain **1i** (>24% yield for 2 steps).

1i: ¹H-NMR (400 MHz, CDCl₃): d = 1.70-1.77 (m, 3H), 1.98 (t, J = 2.4 Hz, 1H), 2.24-2.40 (m, 2H), 4.28 (m, 1H), 5.15 (dd, J = 10.6, 1.4 Hz, 1H), 5.28 (dd, J = 16.9, 1.4 Hz, 1H), 5.87 ppm (ddd, J = 16.9, 10.6, 6.3 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): d = 14.6, 35.3, 68.8, 71.8, 83.9, 115.2, 140.3 ppm; IR (neat): $\mathbf{n}^{-} = 3366$, 2117, 1645, 1431 cm⁻¹; EI-Ms: m/z: 110 (M^{+}); HRMS: m/z: Calcd for C₇H₁₀O: 110.0732, Found: 110.0734.

4,4-Dimethylhept-1-en-7-yn-3-ol (1j): To a solution of LDA (10.4 mmol) in THF (14 mL) was added ethyl isobutylate (10.0 mmol) at -78 °C and the mixture was stirred at 0 °C. After stirring for 10 minutes, propargyl bromide was added to the solution at -78 °C. The mixture was allowed to warm to ambient temperature and stirred for 1 hour. Then the reaction was quenched with aqueous solution of NH₄Cl and the reaction mixture was diluted with CH₂Cl₂. The mixture was washed with water and the organic layer was dried over Na₂SO₄. The solvent was evaporated in vacuo and the residue was purified by silica gel column chlomatography to obtain ethyl 2,2-dimethylpent-4-ynoate (84% yield). To a solution of LAH (1.0 M Et₂O solution, 9.2 mmol) in Et₂O (30 mL) under Ar atmosphere was added a solution of ethyl 2,2-dimethylpent-4-ynoate (8.4 mmol) in Et₂O (10 mL) at 0 °C and the mixture was stirred for 20 minutes at the temperature. Then 10% aqueous solution of KOH was added dropwise to the mixture at 0 °C. The mixture was allowed to warm to rt and stirred for 1 hour. The reaction

mixture was filtered with a pad of celite and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chlomatography to obtain 2,2-dimethylpent-4-yn-1-ol (76% yield). To a solution of 2,2-dimethylpent-4-yn-1-ol (6.4 mmol) and celite (6.2 g) in CH₂Cl₂ (38 mL) was added PCC (4.2 mmol) at rt and the mixture was stirred overnight. Then the reaction mixture was filtered with a pad of silica gel and the filtrate was concentrated in vacuo. The residue was dissolved in THF (23 mL) under Ar atmosphere. Vinylmagnesium chloride (1.44 M THF solution, 6.5 mmol) was added to the solution at -78 °C and the mixture was stirred at the temperature. After stirring for 10 minutes, the reaction was quenched with aqueous solution of NH₄Cl and the reaction mixture was diluted with CH₂Cl₂. The mixture was washed with water and the organic layer was dried over Na₂SO₄. The solvent was evaporated in vacuo and the residue was purified by silica gel column chlomatography to obtain **1j** (>13% yield for 2 steps).

1j: ¹H-NMR (400 MHz, CDCl₃): d = 0.98 (s, 3H), 0.99 (s, 3H), 1.64 (d, J = 4.3 Hz, 1H), 2.01 (t, J = 2.4 Hz, 1H), 2.13 (dd, J = 16.4, 2.4 Hz, 1H), 2.30 (dd, J = 16.4, 2.4 Hz, 1H), 4.00 (br t, J = 5.8 Hz, 1H), 5.22 (d, J = 10.6 Hz, 1H), 5.28 (dt, J = 16.9, 1.4 Hz, 1H), 5.93 ppm (ddd, J = 16.9, 10.6, 6.8 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): d = 22.1, 23.2, 28.7, 37.5, 70.3, 78.8, 82.3, 117.0, 137.4 ppm; IR (neat): $\mathbf{n}^{\sim} = 3422$, 2116, 1642 cm⁻¹; EI-Ms: m/z: 138 (M^{+}); HRMS: m/z: Calcd for C₉H₁₄O: 138.1045, Found: 138.1044.

1-(2-(Prop-2-ynyl)phenyl)prop-2-en-1-ol (1k): To a solution of 3-isochromanone (3.3 mmol) in CH₂Cl₂ (10 mL) was added DIBAH (3.7 mmol) at -78 °C under Ar atmosphere and the mixture was stirred at the temperature. After stirring for 2 hours, the reaction was quenched with 1N HCl and the reaction mixture was diluted with CH₂Cl₂. The mixture was washed with water and the organic layer was dried over Na₂SO₄. Then the solvent was evaporated in vacuo to obtain crude 3,4-dihydro-1H-isochromen-3-ol. To a solution of LDA (7.6 mmol) in THF (10 mL) was added tetramethyl diazomethane (3.8 mmol) at -78 °C under Ar atmosphere and the mixture was stirred for 30 minutes at the temperature. Then a solution of crude 3,4-dihydro-1*H*-isochromen-3-ol in THF (2 mL) was added dropwise to the solution at -78 °C and the mixture was stirred for 30 minutes at the temperature. The mixture was allowed to warm to ambient temperature gradually. The reaction was quenched with aqueous solution of NH₄Cl and the reaction mixture was diluted with Et₂O. The mixture was washed with water and brine, and the organic layer was dried over Na₂SO₄. The solvent was evaporated in vacuo and the residue was purified by silica gel column chlomatography to obtain (2-(prop-2-ynyl)phenyl)methanol (88% yield for 2 steps). To a solution of (2-(prop-2-ynyl)phenyl)methanol (2.9 mmol) and celite (2.8 g) in CH₂Cl₂(16 mL) was added PCC (8.7 mmol) at rt and the mixture was stirred 1 hour. Then the reaction mixture was filtered with a pad of silica gel and the filtrate was concentrated in vacuo. The residue was dissolved in THF (10 mL) under Ar atmosphere. Vinylmagnesium chloride (1.44 M THF solution, 2.9 mmol) was added to the solution at -78 °C and the mixture was stirred at the temperature. After stirring for 1.5 hours, the reaction was quenched with aqueous solution of NH₄Cl and the reaction mixture was diluted with CH₂Cl₂. The mixture was washed with water and the organic layer was dried over Na₂SO₄. The solvent was evaporated in vacuo and the residue was purified by silica gel column chlomatography to obtain 1k (>76% yield for 2 steps).

1k: ¹H-NMR (400 MHz, CDCl₃): d = 2.05 (br s, 1H), 2.26 (t, J = 2.4 Hz, 1H), 3.74 (t, J = 2.4 Hz, 1H), 5.30 (dd, J = 10.6, 1.4 Hz, 1H), 5.42 (dd, J = 17.4, 1.4 Hz, 1H), 5.55 (br d, J = 4.8 Hz, 1H), 6.12 (ddd, J = 17.4, 10.6, 1.4 Hz, 1H), 7.33-7.37 (m, 2H), 7.50-7.55 ppm (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): d = 22.2, 71.0, 71.7, 82.0, 115.5, 126.8, 127.5, 128.2, 129.2, 133.7, 139.0, 139.8 ppm; IR (neat): $\mathbf{n}^{\sim} = 3296$, 2119, 1641 cm⁻¹; EI-Ms: m/z: 172 (M^{+}); HRMS: m/z: Calcd for C₁₂H₁₂O: 172.0888, Found: 172.0894.

Oct-1-en-7-yn-4-ol (1q): To a solution of 4-pentyn-1-ol (19.3 mmol) in CH₂Cl₂ (120 mL) was added celite (19.4g) and PCC (58.2 mmol) at rt and the mixture was stirred at the temperature. After stirring overnight, the reaction mixture was filtered with a pad of silica gel. The filtrate was concentrated in vacuo. Then the residue was dissolved in THF (70 mL) under Ar atmosphere. Allylmagnesium bromide (1.0 M Et₂O solution, 20.0 mmol) was added to the solution at -78 °C and the mixture was stirred at the temperature. After stirring for 1 hour, the reaction was quenched with aqueous solution of NH₄Cl and the reaction mixture was diluted with CH₂Cl₂. The mixture was washed with water and the organic layer was dried over Na₂SO₄. The solvent was evaporated in vacuo and the residue was purified by silica gel column chlomatography to obtain **1i** (>17% yield for 2 steps).

1q: ¹H-NMR (400 MHz, CDCl₃): d = 1.57-1.78 (m, 3H), 1.97 (t, J = 2.4 Hz, 1H), 2.15-2.22 (m, 1H), 2.28-2.37 (m, 3H), 3.77-3.85 (m, 1H), 5.15 (d, J = 12.6 Hz, 2H), 5.78-5.88 ppm (m, 1H); ¹³C-NMR (100 MHz, CDCl₃): d = 15.0, 35.1, 41.9, 68.7, 69.4, 84.1, 118.4, 134.4 ppm; IR (neat): $\mathbf{n}^{\sim} = 3304$, 2117, 1642, 1435 cm⁻¹; EI-Ms: m/z: 110 (M^{+}); HRMS: m/z: Calcd for C₈H₁₂O: 124.0888, Found: 124.0840.

Hept-6-en-1-yn-3-ol (1r): To a solution of 4-penten-1-ol (19.3 mmol) in CH_2Cl_2 (120 mL) was added celite (19.4g) and PCC (58.2 mmol) at rt and the mixture was stirred at the temperature. After stirring 1 hour, the reaction mixture was filtered with a pad of silica gel. The filtrate was concentrated in vacuo. Then the residue was dissolved in THF (70 mL) under Ar atmosphere. Ethynylmagnesium bromide (0.5 M THF solution, 20.0 mmol) was added to the solution at -78 °C and the mixture was stirred at the temperature. After stirring for 10.5 hours, the reaction was quenched with aqueous solution of NH_4Cl and the reaction mixture was diluted with CH_2Cl_2 . The mixture was washed with water and the organic layer was dried over Na_2SO_4 . The solvent was evaporated in vacuo and the residue was purified by silica gel column chlomatography to obtain **1i** (>10% yield for 2 steps).

1q: ¹H-NMR (400 MHz, CDCl₃): d = 1.79-1.86 (m, 3H), 2.22-2.28 (m, 2H), 2.48 (d, J = 1.9, 1H), 2.28-2.37 (m, 1H), 5.01 (dt, J = 8.7, 1.4 Hz, 1H), 5.08 (m, 1H), 5.78-5.89 ppm (m, 1H); ¹³C-NMR (100 MHz, CDCl₃): d = 29.2, 36.6, 61.8, 73.2, 84.6, 115.4, 137.5 ppm; IR (neat): $\mathbf{n}^{\sim} = 3305, 2115, 1642$ cm⁻¹; EI-Ms: m/z: 109 (M^+ -H); HRMS: m/z: Calcd for C₇H₉O: 109.0653, Found: 109.0495.

Procedure for kinetic studies to confirm the change of rate-determining step

Grubbs' 1st generation catalyst was dried in vacuo for 30 min and appropriate amount of CD_2Cl_2 was added under Ar atmosphere to prepare 0.002 M solution of Grubbs' 1st generation catalyst in CD_2Cl_2 . 1,2-Dichloroethane was added to the solution as an internal standard (ca. 0.03378 M). Then 0.6 mL of this solution was transferred to a dried NMR tube. Just before measurement of ¹H-NMR, a corresponding amount of N-tert-Butoxycarbonyl-3-vinyl-3-piperidene (**1a**) or 4-dimethylhept-1-en-6-yn-3-ol (**1j**) was added to the NMR tube and the tube was shaken intensively. Then ¹H-NMR was measured continuously. The concentration of the desired product (**2a** or **2j**) was estimated from the integration of 1,2-

Dichloroethane as an internal standard. Initial reaction rates were estimated from the approximated curves (first order) of first 5 minutes on each conditions.

initial conc. of 1a = 27.9 (mM)						
time (min)	0	2.5	3.3	4	4.7	5.5
			10.	13.	15.	18.
conc. of 2a (mM)	0	7.4	9	2	5	4
initial conc. of 1a = 53.4 (mM)						
time(min)	0	2.6	3.4	4.1	4.9	5.6
		18.	25.	30.	31.	36.
conc. of 2a (mM)	0	4	0	7	4	6
initial conc. of 1a = 75.7 (mM)						
time(min)	0	3.1	3.9	4.8	5.7	
		29.	37.	44.	47.	
conc. of 2a (mM)	0	3	1	1	1	

initial conc. of 1a (mM)	27.9	53.4	75.7
rate constant (mMmin ⁻¹)	3.2911	6.8235	8.9069
log [initial conc. of 1a (M)] log [rate constant (mMmin ⁻	-1.554822518	-1.272815922	-1.121166383
¹)]	0.517341078	0.834007195	0.949726576

initial conc. of $1j = 62.7$ (mM)					
time (min)	0	2.3	3.2	3.9	4.7
conc. of 1j (mM)	0	5.43	5.44	7.00	7.46
initial conc. of 1j = 76.0 (mM)					
time (min)	0	2.4	3.2	3.9	4.7
conc. of 1j (mM)	0	4.83	5.98	6.93	8.70
initial conc. of 1 <i>j</i> = 85.6 (mM)					

initial conc. of 1j (mM)	62.7	76	85.6
rate constant (mMmin ⁻¹)	1.7431	1.8537	1.6984
		-	-
log [initial conc. of 1j (M)]	-1.202677639	1.119340427	1.067423255
log [rate constant (mMmin ⁻¹)]	0.241322302	0.268039449	0.230039981

